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Abstract 

Manufacturing errors (ME) are ubiquitous and inevitable in 
product engineering manufacturing. However, the existing 
methods are hardly oriented to the discrete-variable-
based modelling methodology for the topology 
optimization (TO). In this regard, a novel methodology 
based on morphological operations and random filed 
(MORF) is proposed for the discrete-variable-based 
topology optimization procedures to consider MEs. 
Morphological operations are firstly introduced to generate 
the geometrical variation. Moreover, the dimension of the 
structuring element in the morphological operations is set 
as the output of the random field function. Using the 
proposed approach, MORF is capable of quantifying 
spatially nonuniform MEs rigorously. The numerical result 
has validated the proposed method. 

1 Introduction 

Topology optimization(TO) is to find the optimal materials 
distribution of a device under some performance criteria 
in the initial stage of product manufacturing.  For a real 
world device, the deviation of the manufactured topology 
from the computationally optimized one resulted from a 
manufacture tolerance will dramatically degrade the 
performance of the optimized design. Consequently, 
Robust Optimization (RO) considering Manufacturing 
Errors (ME) has become a hot topic in TO studies 

One of the key issues in ROME is the appropriate 
representation of a shap or topological variation. As is 
well known, two different modelling methodologies, the 
discrete-variable-based and the continuous-variable-
based ones, are commonly used in TO studies. 
Nevertheless, the existing techniques for ROME in TO 
are merely oriented to the continuous-variable-based 
modelling methodology, such as the SIMP and the LSM, 
while negligible efforts have been paid to the ROME in 
the discrete-variable-based TO. A continuous-variable-
based TO method basically represents the geometrical 
deformation by disturbing the intermediate variables, and 
is obviously inapplicable to a discrete-variable-based 
modelling one [1]-[2]. 

In this regard, a methodology based on morphological 
operations and random fields (MORF) is firstly proposed 
to solve a discretely modelled TO problem considering 
MEs. Specifically, the geometrical deformation is 
regarded as the fluctuation of the interface between two 
materials, and is represented using the morphological 
operations conducted on the computationally optimized 
topology. The dimension of the morphological operator is 
defined as the output of a random field, enabling MORF 
to represent spatially nonuniform MEs. The numerical 
results have validated the ability of the proposed method 
to produce optimized topology to withstand MEs. 

2 ME Representation based on Morphological 
Operations and Random Field 

Dilation and erosion are two basic morphological 
operations. Dilation adds pixels to the boundaries of 
objects in an image, while erosion removes pixels on object 
boundaries. The number of pixels added or removed from 
the objects in an image depends on the size and shape of 
the structuring element (SE) used to process the image. Fig. 
1 depicts intuitively the results of erosion and dilation 
operations on an image under a diamond-shaped SE. 
Obviously, the dimensions and shape of the SE jointly 
determine the pattern of the new image. 

       
                       (a)                                    (b) 

Fig. 1. (a) Erosion operation, (b) Dilation operation 

In a discrete-variable-based TO, the ME could be 
interpreted as reordering 0/1 patterns in the neighbourhood 
of the boundary. In other words, some parts of the material 
tend to grow again, while some parts of the material tend 
to contract. Therefore, it is reasonable to represent the 
growth of the material by a dilation operation, and the 
contraction by an erosion operation.  In practical 
engineering, the ME usually varies in space. To this end, 
the random field theorem is employed to generate a 
spatially nonuniform ME.  

A random feld h(x, θ), with θ belonging to space of 
random event Ω, is expressed using KL expansion as: 
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where ( )h x and δ are the mean value and variance of 

h(x, θ), respectively, m is the truncation order, ( )
n
  is 

the uncorrelated random variable, λn and fn are 
eigenvalues and eigenvectors of the covariance function 
C(x1, x2) following: 
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In this study, a squared exponential covariance function 
is used: 
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where L is the correlation length. Substitute (3) into (2), 
one can obatin 
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After obtaining λn and fn, the random field could therefore 
be approximated using Eq. (4). 

To employ the random field h(x, θ) to represent the 
nonuniform deformation in the neighborhood of the 
interface Bn, the mean value of  ω(x, θ) is set to be zero, 
indicating that the deformations fluctuate around the 
original interface. The integral interval in Eq. (4) is 
discretized into K segments, which is equal to the number 
of the elements in Bn. In each realization of h(x, θ), a 
vector containing K random variables will be generated. 
As showed in Fig. 2, for the ith element on the interface, 
a morpholigical operation with an SE (suppose a square 
shaped one) of the length equal to h(i) will be operated. 
Specifically, a positive diameter infers a dilation, while a 
negative diameter infers an erosion. Fig. 3(a) and (b) show 
five realizations of h(x, θ) and the corresponding 
deformations (black) on a 400×400 square interface (red), 
respectively.  
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Fig. 2. Illustration of dilation and erosion based on random 
field 
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Fig. 3. realizations of random filed and the corresponding 
deformed interface 

3 Numerical results 

To testify the proposed methodology, a magnetic 
actuator, as showed in Fig.4 (reference model), including 
a yoke, a coil, and an armature [10] is topologically 
optimized to maximize the magnetic force in a specific 
direction. The number of finite elements in the design 
region is 30×9=270. The input current of 1 A is applied to 
the coils with 400 turns. 
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Fig. 4. Schematic diagram of the actuator 

Fig. 5(a) shows the optimized results of the deterministic 
TO. Fig. 9(b)-(c) show the optimized results of the robust 
TO under θ = (L=0.5, δ=1) and θ = (L=0.5, δ=1.5), 
respectively (black area indicates the air). The magnetic 
forces are listed in Tab 1.  Compared to the robust 
optimized topology, the air area (black) at the left lower 
corner of the design domain in the deterministic 
optimized topology is quite thin and tends to shrink 
caused by a geometry uncertainty (Fig. 5(c)). In this way, 
the magnetic flux will be blocked from reaching the 
armature, resulting in a dramatic drop of the magnetic 
force. While in the robust optimized topology, this area 
grows larger, thus insensitive to the geometry uncertainty.  
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Fig. 5. (a) Deterministic optimized topology; (b) Robust 
optimized topology with L=0.5, δ=1; (c) Robust optimized 
topology with L=0.5, δ=1.5; (c) Distorted topology from (a)  

Table 1 
 The Optimized Results  

 
Magnetic force 

(N/m)  

Expected  

value(N/m) 

Standard 

deviation 

Deterministic 

result 
-55.62(30.35%↑) -28 668 

Robust result -52.82(23.79%↑) -51.97 4.21 
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